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Abstract

The analysis of density wave instability boundary is carried out to investigate the boiling flow in a narrow vertical

annular channel, which is heated simultaneously from the inner and the outer sides of the channel by two streams of

primary countercurrent flow. The model developed on the basis of the method of weighted residuals, which reduces the

channel partial differential equations to seven time-dependent nonlinear ordinary equations, considers the heat-flux

coupling between the primary and the secondary channel in space. The derived dynamical system is studied using

bifurcation theory to obtain the Hopf bifurcation points, i.e. the stability boundary. The effects of varying the inlet and

exit pressure loss coefficients, the inlet subcooling and the system pressure for the channel on the stability boundary are

obtained and discussed.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Two-phase flow instabilities in heated channels have

been observed to occur in many industrial systems like

conventional and nuclear power plants, refrigeration

equipment, and heat exchangers. The thermal oscilla-

tions brought about by these instabilities can cause

problems of system control and led to the failure of the

tube, and therefore are very detrimental to the safe

operation of these equipment. It is important to be able

to predict the conditions under which a two-phase flow

system will be subject to these instabilities in order to

leave an adequate margin of safety against oscillations

for the equipment. Considered to be the most frequently

observed occurrence in boiling channels and of great
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concern among the various kinds of the two-phase flow

instabilities is the density wave instability, which is

characterized by the waves of heavier and lighter fluid

alternately traveling from the inlet to the outlet channel

section. The self-sustained flow oscillation is caused by

the coupling between the time delay due to void prop-

agation through the boiling channel and the external

feedback pressure drop across the channel.

So far the density wave instability has been exten-

sively studied [1], and considerable interest has already

been shifted on from previous analytical work of linear

frequency-domain stability analysis of the threshold of

instability to recent study of the nonlinear behavior of

density wave instability [2–6], which can clarify what

happens once the linear-stability threshold has been

crossed. Rizwan-Uddin compared the results obtained

from different models describing two-phase flow

dynamics, i.e., the homogeneous equilibrium model

(HEM), the drift-flux model and the two-fluids model,

with experimental data for stability boundaries (SB) and
ed.

mail to: ly017107@online.sh.cn


Nomenclature

A cross-sectional flow area

D diameter

Fr Froude number

f friction factor

g gravitational constant

h enthalpy

k pressure loss coefficient

L channel length

Nf friction number

Npch phase change number

Nr q�
f =ðq�

f � q�
gÞ

Nsub inlet subcooling number

Nq density ratio

P pressure

Q heat transfer rate

q heat flux

r radius

T temperature

t time

U overall heat transfer coefficient

v velocity

x quality

z coordinate along the channel

Greek symbols

a void fraction

b frequency

g boiling dryout boundary

l boiling inception boundary

q density

n perimeter

Subscripts

1 superheated vapor region

2 two-phase region

3 subcooled liquid region

acc acceleration

b secondary side (the channel)

exit channel exit

ext external

f primary side or liquid

fric frictional

g vapor

grav gravitational

inlet channel inlet

m mixture
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verified that the simple HEM could also yield very

good agreement [5]. Karve studied the nuclear-coupled

thermal-hydraulic stability of boiling water reactors

using the method of weighted residuals (MWR) to re-

duce the channel PDEs of HEM to a set of nonlinear

ODEs and validated that quadratic profiles for single-

phase enthalpy and two-phase quality are sufficient and

are the best compromise between the simplicity of the

model and the accuracy of the results for SB [7]. The

inherent local linear-stability information for the ODEs

can be readily obtained by calculating its eigenvalues

whereas the model can still be applied to reveal the

nonlinear effects.

In view of the importance of the linear-stability

analysis of the threshold of instability and the extensi-

bility to further include nonlinear effects, Karve’s model

is therefore adopted and developed in this paper to

describe the forced-flow boiling in a concentric circular-

tube narrow annulus heated by primary high tempera-

ture fluids from the inner surface and the outer surface

simultaneously. The steady-state solutions, i.e., the heat

fluxes for the three regions of the channel which are

required by our SB analyses, are provided by our pre-

vious calculation results [8]. The derived dynamical

system is studied using bifurcation theory to obtain the

Hopf bifurcation points, which compose the stability

boundary. The effects of varying the inlet and exit
pressure loss coefficients, the inlet subcooling and the

system pressure for the channel on the stability bound-

ary are obtained and discussed. The work reported here

is also a further step toward our eventual goal, i.e., the

development of a nonlinear dynamic model which is

capable of dealing with the dynamic coupling between

the primary and secondary fluids of the once-though

steam generator in this configuration.
2. Analysis

2.1. The model

The concentric circular-tube annulus is schematically

shown in Fig. 1. Driven by the external pressure differ-

ence, the secondary subcooled water enters into the

annular channel from bottom and flows upwards,

meanwhile, it is heated along the channel through inner

wall and outer wall by the two streams of counterflow

primary liquid water at high temperature, which flow

respectively through the inner tube and the annular duct

(insulated on the exterior wall) outside the outer tube.

The secondary water will begin to boil at position l, dry
out at position g, and reaches the exit as superheated

vapor. Accordingly the annular channel can be divided

into three regions, i.e., subcooled single-phase region,



Fig. 1. Configuration of annular channel.
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two-phase region and superheated single-phase region.

Other notation in Fig. 1 can be readily understood and

referred to in the Nomenclature. In addition, the one-

dimensional HEM for two-phase flow is assumed for the

physical system.

The main extensions to Karve’s model in this paper

are the addition of the superheated vapor region which

results in the two additional equations for the distribu-

tion of the enthalpy for the region, and the revision of

the heating condition for the channel to incorporate our

previous steady-state results into the SB analysis.

The procedures to derive the dynamic system for the

forced flow in the annulus are that first the one-dimen-

sional time-dependent energy conservation equations in

the two single-phase regions and the HEM equations in

the two-phase region are given, then the quadratic spa-

tial approximations for these single-phase enthalpies and

the two-phase quality are made, and the MWR is used

to reduce the channel PDEs to ODEs, finally an ODE

describing the relation between the channel inlet velocity

and the external pressure drop is derived from the

channel momentum conservation equations. In total the

dynamic system consists of seven ODEs. These are for

the phase variables a1ðtÞ, a2ðtÞ, s1ðtÞ, s2ðtÞ, b1ðtÞ, b2ðtÞ
and vinletðtÞ in the channel. The variables a1ðtÞ and a2ðtÞ
are respectively the coefficients of the linear and qua-

dratic terms of the spatially quadratic representation for

the space- and time-dependent single-phase subcooled

enthalpy. The variables s1ðtÞ and s2ðtÞ are respectively

the coefficients of the linear and quadratic terms of the

spatially quadratic representation for the space- and
time-dependent two-phase quality. The variables b1ðtÞ
and b2ðtÞ are respectively the coefficients of the linear

and quadratic terms of the spatially quadratic repre-

sentation for the space- and time-dependent single-phase

superheated enthalpy. The variable vinletðtÞ is the channel
inlet velocity. The seven ODEs are derived below.

2.1.1. ODEs for a1(t) and a2(t) in the subcooled liquid

region

The enthalpy equation for the incompressible sub-

cooled liquid phase is

q�
f

oh�ðz�; t�Þ
ot�

þ q�
f v

�
inletðt�Þ

oh�ðz�; t�Þ
oz�

¼ q�if3n
�
iwo þ q�of3n

�
owi

A�
b

;

ð1Þ

where A�
b is the cross-sectional area for the channel, i.e.,

A�
b ¼ pðr�2owi � r�

2

iwoÞ: ð2Þ

n�iwo and n�owi are respectively the wetted perimeters

for the inner and outer walls of the channel, i.e.,

n�iwo ¼ 2pr�iwo; ð3Þ

n�owi ¼ 2pr�owi: ð4Þ

h� is the subcooled single-phase enthalpy, q�if3 and q�of3
are the heat fluxes of the inner and outer walls in the

region, which are respectively calculated from our pre-

vious steady-state analysis as

q�if3 ¼ U �
iwo3

ðT �
ifo � T �

biÞ � ðT �
ifl � T �

satÞ
ln

T �
ifo
�T �

bi

T �
ifl

�T �
sat

; ð5Þ

q�of3 ¼ U �
owi3

ðT �
ofo � T �

biÞ � ðT �
ofl � T �

satÞ
ln

T �
ofo

�T �
bi

T �
ofl

�T �
sat

: ð6Þ

By introducing the following dimensionless variables

hðz; tÞ ¼ h�ðz�; t�Þ
Dh�fg

; t ¼ t�v�0
L� ; z ¼ z�

L� ;

vinletðtÞ ¼
v�inlet
v�0

; T ¼ T �

T �
0

Nq ¼
q�
g

q�
f

;

Nr ¼
q�
f

Dq� ; Npch3 ¼
L�Dq�ðq�if3n

�
iwo þ q�of3n

�
owiÞ

A�
bDh

�
fgq

�
fq

�
gv

�
0

;

ð7Þ

Eq. (1) can be rearranged into the following dimen-

sionless form

ohðz; tÞ
ot

þ vinletðtÞ
ohðz; tÞ

oz
¼ NqNrNpch3; ð8Þ

where T �
0 and v�0 are respectively the reference tempera-

ture and the reference velocity, and Npch3 is the phase

change number for the region.

As the same method taken in Karve’s model we

approximate hðz; tÞ by the following quadratic function

hN ðz; tÞ as
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hðz; tÞ � hN ðz; tÞ ¼ hinlet þ a1ðtÞzþ a2ðtÞz2 ð9Þ

and take the weight functions as unity and z respectively,
then use MWR to obtain the following two ODEs as

da1ðtÞ
dt

¼ 6

lðtÞ ½NqNrNpch3 � vinletðtÞa1ðtÞ� � 2vinletðtÞa2ðtÞ;

ð10Þ

da2ðtÞ
dt

¼ � 6

l2ðtÞ ½NqNrNpch3 � vinletðtÞa1ðtÞ�: ð11Þ

At steady state we have

~a1 ¼
NqNrNpch3

~vinlet
; ð12Þ

~a2 ¼ 0 ð13Þ

and the enthalpy profile becomes linear.

By substituting the boundary condition

hðlðtÞ; tÞ ¼ hsat ð14Þ

into Eq. (9), the boiling inception boundary lðtÞ could

be obtained as

lðtÞ ¼ 2NqNrNsub

a1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21ðtÞ þ 4a2ðtÞNqNrNsub

p ; ð15Þ

where the inlet subcooled number is defined as

Nsub ¼
ðh�sat � h�inletÞDq�

Dh�fgq�
g

: ð16Þ

The physical meaning for Eq. (15) can be clearly seen

by substituting Eqs. (12) and (13) into it and converting

the resulting equation into its dimensional form as

~q�if3n
�
iwo~lþ ~q�of3n

�
owi~l ¼ q�

f~v
�
inletA

�
bðh�sat � h�inletÞ; ð17Þ

i.e.,

Q�
if3 þ Q�

of3 ¼ m�
bðh�sat � h�inletÞ; ð18Þ

which is exactly the same energy conservation equation

as that in our previous steady-state flow analysis [8].

2.1.2. ODEs for s1(t) and s2(t) in the two-phase region

For the HEM, the two-phase mixture density equa-

tion is

oq�
mðz�; t�Þ
ot�

þ o

oz�
q�
mðz�; t�Þv�mðz�; t�Þ

� �
¼ 0; ð19Þ

where the relation between q�
mðz�; t�Þ and the void frac-

tion aðz�; t�Þ is
q�
mðz�; t�Þ ¼ aðz�; t�Þq�

g þ ½1� aðz�; t�Þ�q�
f ð20Þ

and aðz�; t�Þ is related to the mixture quality xðz�; t�Þ as

aðz�; t�Þ ¼ 1

1þ 1�x
x

q�g
q�
f

: ð21Þ
In Eq. (19) the mixture velocity v�mðz�; t�Þ satisfies
ov�mðz�; t�Þ

oz�
¼ ðq�if2n

�
iwo þ q�of2n

�
owiÞDq�

q�
fq

�
gA

�
bDh

�
fg

; ð22Þ

where q�if2 and q�of2 are respectively the heat fluxes of the

inner and outer walls in the two-phase region and pro-

vided by our previous analysis as

q�if2 ¼ U �
iwo2

T �
ifg � T �

ifl

ln
T �
ifg � T �

sat

T �
ifl � T �

sat

; ð23Þ

q�of2 ¼ U �
owi2

T �
ofg � T �

ofl

ln
T �
ofg � T �

sat

T �
ofl � T �

sat

: ð24Þ

Introducing the two additional dimensionless vari-

ables

qmðz; tÞ ¼
q�
mðz�; t�Þ
q�
f

; vmðz; tÞ
v�m
v�0

ð25Þ

and through Eq. (22), we can transform Eq. (19) into the

following dimensionless form as

oqmðz; tÞ
ot

þ vmðz; tÞ
oqmðz; tÞ

oz
¼ �Npch2qmðz; tÞ; ð26Þ

where the phase change number Npch2 for the two-phase

region is

Npch2 ¼
ðq�if2niwo þ q�of2n

�
owiÞL�Dq�

A�
bDh

�
fgq

�
fq

�
gv

�
0

ð27Þ

and qmðz; tÞ can be written through Eqs. (20) and (21) as

qmðz; tÞ ¼
NqNr

NqNr þ xðz; tÞ : ð28Þ

The dimensionless mixture velocity is obtained by

integrating Eq. (22) from lðtÞ to any z in the two-phase

region as

vmðz; tÞ ¼ vinletðtÞ þ Npch2½z� lðtÞ�: ð29Þ

As the same in Karve’s model xðz; tÞ is approximated

by the quadratic function x2ðz; tÞ as

xðz; tÞ � x2ðz; tÞ ¼ NqNrfs1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2g
ð30Þ

and the two weight functions are taken as unity and

z� lðtÞ respectively, then the following two ODEs can

be obtained by using MWR as

ds1ðtÞ
dt

¼ 1

f2ðtÞ
½f3ðtÞf1ðtÞ þ f4ðtÞ�; ð31Þ

ds2ðtÞ
dt

¼ 1

f2ðtÞ
½f5ðtÞf1ðtÞ þ f6ðtÞ�: ð32Þ

Here the limits of integration for the inner product in

using MWR are from z ¼ lðtÞ to z ¼ gðf Þ, which is
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different from that in Karve’s model, and the boiling

dryout boundary gðtÞ is given by

gðtÞ ¼ lðtÞ þ 2

NqNr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21ðtÞ þ

4s2ðtÞ
NqNr

q
þ s1ðtÞ

� � ; ð33Þ

which is obtained by applying the boundary condition

xðgðtÞ; tÞ ¼ 1 to Eq. (30).

At steady state we have

~s1 ¼
Npch2

~minlet
; ð34Þ

~s2 ¼ 0: ð35Þ

In the similar way we can check that, when at steady

state, Eq. (33) is degraded as exactly the same as the

steady-state energy conservation equation describing the

two-phase flow in the region, which is used in our pre-

vious steady-state analysis.

The intermediate functions in Eqs. (31) and (32) are

the same as that in Karve’s analysis [7] except for the

limits of integration. They are

f1ðtÞ ¼
dlðtÞ
dt

;

f2ðtÞ ¼ I23 ðtÞ � I1ðtÞI6ðtÞ;
f3ðtÞ ¼ s1ðtÞ½I1ðtÞI3ðtÞ � I2ðtÞI6ðtÞ�

þ 2s2ðtÞ½I23 ðtÞ � I1ðtÞI6ðtÞ�;
f4ðtÞ ¼ Npch2½M2ðtÞI3ðtÞ �M1ðtÞI6ðtÞ�

� minletðtÞs1ðtÞ½I1ðtÞI3ðtÞ � I2ðtÞI6ðtÞ�
� ½2minletðtÞs2ðtÞ þ Npch2ðtÞs1ðtÞ�
� ½I23 ðtÞ � I1ðtÞI6ðtÞ�;

f5ðtÞ ¼ s1ðtÞ½I2ðtÞI3ðtÞ � I21 �;
f6ðtÞ ¼ Npch2½M1ðtÞI3ðtÞ �M2ðtÞI1ðtÞ�

� minletðtÞs1ðtÞ½I2ðtÞI3ðtÞ � I21 ðtÞ�
� 2s2Npch2½I23 ðtÞ � I1ðtÞI6ðtÞ�:

I1ðtÞ ¼
Z gðtÞ

lðtÞ

z� lðtÞ
f1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2g2

dz;

I2ðtÞ ¼
Z gðtÞ

lðtÞ

1

f1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2g2
dz;

I3ðtÞ ¼
Z gðtÞ

lðtÞ

½z� lðtÞ�2

f1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2g2
dz;

I6ðtÞ ¼
Z gðtÞ

lðtÞ

½z� lðtÞ�3

f1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2g2
dz;

M1ðtÞ ¼
Z gðtÞ

lðtÞ

1

1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2
dz;

M2ðtÞ ¼
Z gðtÞ

lðtÞ

z� lðtÞ
1þ s1ðtÞ½z� lðtÞ� þ s2ðtÞ½z� lðtÞ�2

dz:

ð36Þ
2.1.3. ODEs for b1(t) and b2(t) in the superheated vapor

region

The dimensionless enthalpy equation for the super-

heated vapor region is

ohðz; tÞ
ot

þ mmðgðtÞ; tÞ
ohðz; tÞ

oz
¼ NrNpch1; ð37Þ

where

Npch1 ¼
ðq�if1n

�
iwo þ q�of1n

�
owiÞL�Dq�

A�
bDh

�
fgq

�
gq

�
f m

�
0

; ð38Þ

q�if1 ¼ U �
iwo1

ðT �
ifg � T �

satÞ � ðT �
ifi � T �

boÞ

ln
T �
ifg � T �

sat

T �
ofi � T �

bo

; ð39Þ

q�of1 ¼ U �
owi1

ðT �
ofg � T �

satÞ � ðT �
ofi � T �

boÞ

ln
T �
ofg � T �

sat

T �
ofi � T �

bo

: ð40Þ

In a similar way in using MWR we introduce two

vector operators

A ¼ o

ot
þ mmðgðtÞ; tÞ

o

oz
; ð41Þ

S ¼ NrNpch1 ð42Þ
and approximate a quadratic profile for the enthalpy in

the region as

hðz; tÞ � h2ðz; tÞ
¼ hsatm þ b1ðtÞ½z� gðtÞ� þ b2ðtÞ½z� gðtÞ�2 ð43Þ

and substitute the weight functions w1ðzÞ ¼ 1 and

w2ðzÞ ¼ z� gðtÞ respectively into the following equa-

tions

ðwk ; fAh2 � SgÞ ¼ 0; ðk ¼ 1; 2Þ ð44Þ

to arrive at the two equations.

In Eq. (44) the inner product is represented as

ða; bÞ ¼
Z 1

gðtÞ
aðzÞbðzÞdz: ð45Þ

By solving the resulting two linear equations simul-

taneously for the derivatives for b1ðtÞ and b2ðtÞ, we

obtain

db1ðtÞ
dt

¼ 6

1� gðtÞ NrNpch1

�
� mmðgðtÞ; tÞ
�

� dgðtÞ
dt

�
b1ðtÞ

	

� 2 mmðgðtÞ; tÞ
�

� dgðtÞ
dt

�
b2ðtÞ; ð46Þ

db2ðtÞ
dt

¼ �6

½1�gðtÞ�2
NrNpch1

�
� mmðgðtÞ; tÞ
�

�dgðtÞ
dt

�
b1ðtÞ

	
:

ð47Þ
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We can see that Eqs. (46) and (47) are like Eqs. (10)

and (11) respectively in their forms.

In Eqs. (46) and (47) the mixture velocity at the

dryout position is

mmðgðtÞ; tÞ ¼ minletðtÞ þ Npch2½gðtÞ � lðtÞ�: ð48Þ

At steady state we have

~b1 ¼
NqNrNpch1

~minlet
; ð49Þ

~b2 ¼ 0: ð50Þ
2.1.4. ODE for minlet(t) in the channel

The ODE describing the relation between the channel

inlet velocity minletðtÞ and the external pressure drop DPext
is derived from the momentum conservation equations

for the three regions.

The three momentum equations are respectively

written as

� oP �
3

oz�
¼ q�

f

dm�inletðt�Þ
dt�

�
þ f �

3

2D�
h

m�
2

inletðt�Þ þ g�
�
; ð51Þ

� oP �
2

oz�
¼ q�

mðz�; t�Þ
om�mðz�; t�Þ

ot�

�
þ m�mðz�; t�Þ

om�mðz�; t�Þ
oz�

þ f �
2

2D�
h

m�
2

m ðz�; t�Þ þ g�
�
; ð52Þ

� oP �
1

oz�
¼ q�

g

dm�mðg�ðt�Þ; t�Þ
dt�

�
þ f �

1

2D�
h

m�
2

m ðg�ðt�Þ; t�Þ þ g�
�
;

ð53Þ

where the equivalent hydraulic diameter is

D�
h ¼

4A�
b

n�iwo þ n�owi
: ð54Þ

The dimensionless forms for Eqs. (51)–(53) are

respectively

� oP3
oz

¼ dminletðtÞ
dt

þ Nf3m
2
inlet þ Fr�1; ð55Þ

� oP2
oz

¼ qmðz; tÞ
ommðz; tÞ

ot

�
þ mmðz; tÞ

ommðz; tÞ
oz

þ Nf2m
2
mðz; tÞ þ Fr�1

�
; ð56Þ

� oP1
oz

¼ Nq
dmmðgðtÞ; tÞ

dt

�
þ Nf 1m

2
mðgðtÞ; tÞ þ Fr�1

�
; ð57Þ

where the dimensionless variables in the above equations

are

Pj ¼
P �
j

q�
f m

�2
0

; Nfj ¼
f �
j L

�

2D�
h

; ðj ¼ 1; 2; 3Þ; Fr ¼ m�
2

0

g�L� :

ð58Þ
The pressure drop DP3ðtÞ across the subcooled liquid

region can be obtained by integrating Eq. (55) from

z ¼ 0 to z ¼ lðtÞ as
DP3ðtÞ ¼ DPacc;3ðtÞ þ DPfric;3ðtÞ þ DPgrav;3ðtÞ; ð59Þ

where

DPacc;3 ¼
Z lðtÞ

0

dminletðtÞ
dt

dz ¼ lðtÞ dminletðtÞ
dt

; ð60Þ

DPfric;3 ¼
Z lðtÞ

0

Nf 3m
2
inletðtÞdz ¼ Nf3m

2
inletðtÞlðtÞ; ð61Þ

DPgrav;3 ¼
Z lðtÞ

0

Fr�1 dz ¼ Fr�1lðtÞ: ð62Þ

The pressure drop DP2ðtÞ across the two-phase region
can be obtained by integrating Eq. (56) from z ¼ lðtÞ
to z ¼ gðtÞ as

DP2ðtÞ ¼ DPacc1;2ðtÞ þ DPacc2;2ðtÞ þ DPfric;2 þ DPgrav;2ðtÞ;
ð63Þ

where

DPacc1;2 ¼
Z gðtÞ

lðtÞ
qmðz; tÞ

ommðz; tÞ
ot

dz

¼ dminletðtÞ
dt

�
� Npch2

dlðtÞ
dt

�
M1ðtÞ; ð64Þ

DPacc2;2 ¼
Z gðtÞ

lðtÞ
qmðz; tÞmmðz; tÞ

ommðz; tÞ
oz

dz

¼ minletðtÞNpch2ðtÞM1ðtÞ þ N 2
pch2ðtÞM2ðtÞ; ð65Þ

DPfric;2 ¼
Z gðtÞ

lðtÞ
Nf2qmðz; tÞm2mðz; tÞdz

¼ Nf 2½m2inletðtÞM1ðtÞ þ 2minletðtÞNpch2M2ðtÞ
þ N 2

pch2M3ðtÞ�; ð66Þ

DPgrav;2 ¼
Z gðtÞ

lðtÞ
Fr�1qm dz ¼ Fr�1M1ðtÞ ð67Þ

and M3ðtÞ in Eq. (66) is

M3ðtÞ ¼
Z gðtÞ

lðtÞ
qmðz; tÞ½z� lðtÞ�2 dz: ð68Þ

By substituting Eq. (48) into Eq. (57) and integrating

it from z ¼ gðtÞ to z ¼ 1, we can obtain the pressure drop

D1PðtÞ across the superheated vapor region as

DP1ðtÞ ¼ DPacc;1ðtÞ þ DPfric;1ðtÞ þ DPgrav;1ðtÞ; ð69Þ

where

DPacc;1 ¼ Nq½1� gðtÞ� dminletðtÞ
dt

�
þNpch2

dgðtÞ
dt

�
� dlðtÞ

dt

�	
;

ð70Þ
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DPfric;1 ¼ NqNf 1fminletðtÞ þ Npch2½gðtÞ � lðtÞ�g2½1� gðtÞ�;
ð71Þ

DPgrav;1 ¼ NqFr�1½1� gðtÞ�: ð72Þ

In addition the inlet and outlet pressure drops for the

channel are defined respectively as

DPinletðtÞ ¼ kinletm2inletðtÞ; ð73Þ

DPexitðtÞ ¼ kexitNqfminletðtÞ þ Npch2½gðtÞ � lðtÞ�g2; ð74Þ

where kinlet and kexit are respectively the inlet and exit

pressure loss coefficients.

Substituting the above pressure drop expressions into

the following equation for the total external pressure

drop

DPext ¼ DP1ðtÞ þ DP2ðtÞ þ DP3ðtÞ þ DPinletðtÞ þ DPexitðtÞ;
ð75Þ

we can obtain the final ODE for minletðtÞ as

dminletðtÞ
dt

¼ 1

f7ðtÞ
½f8ðtÞ þ f9ðtÞf1ðtÞ þ f12ðtÞf13ðtÞ�; ð76Þ

where

f7ðtÞ ¼ M1ðtÞ þ lðtÞ þ Nq½1� gðtÞ�; ð77Þ

f8ðtÞ ¼ DPext � DPinletðtÞ � DPexitðtÞ � DPfric;3ðtÞ

� DPgrav;3ðtÞ � DPacc2;2ðtÞ � DPfric;2

� DPgrav;2ðtÞ � DPfric;1ðtÞ � DPgrav;1; ð78Þ

f9ðtÞ ¼ Npch2fM1ðtÞ þ Nq½1� gðtÞ�g; ð79Þ

f12ðtÞ ¼
dgðtÞ
dt

; ð80Þ

f13ðtÞ ¼ �Npch2Nq½1� gðtÞ�: ð81Þ

Now we have obtained the seven ODEs, i.e., Eqs.

(10), (11), (31), (32), (46), (47), (76), which compose the

dynamic system describing the unsteady flow in the

channel.
2.2. The method of solution for the SB

The dynamic system obtained above can be repre-

sented as

_XðtÞ ¼ FðX; cÞ; ð82Þ

where the vector of phase variables XðtÞ is

XðtÞ ¼ ða1; a2; s1; s2; b1; b2; minletÞT ð83Þ
and the vector of system operating parameters c is

c ¼ ðNsub;Npch1;Npch2;Npch3;DPextÞT: ð84Þ

The other parameters in the dynamic system are

taken as design parameters.

The local stability of a stationary point for the

dynamic system is determined by the real parts of the

seven eigenvalues k of the Jacobian matrix

J ¼ FXð eX ; cÞ ð85Þ

which is evaluated at the stationary point. If all the seven

eigenvalues have negative real parts, then the stationary

point is stable [9].

It is well known that the SB for density wave oscil-

lations are made of Hopf bifurcation points which are

characterized by a simple pair of purely imaginary ei-

genvalues �ib of the Jacobian J , hence we can simply

obtain the SB from the steady-state equations for the

dynamic system and the two supplemental equations

provided by setting the real and imaginary parts of the

determinant of J � ibI equal to zero respectively. Here b
is the initial oscillation frequency, I is the identity matrix

and i is the imaginary unit.

Since the steady-state solutions for the preceding six-

phase variables, i.e., Eqs. (12), (13), (34), (35), (49), (50),

can be represented by the seventh phase variable minlet,
therefore the steady-state equations are actually reduced

to one steady-state equation, Eq. (75), if we do not count

in the solutions for the phase change numbers Npch1,

Npch2 and Npch3 which are provided by our previous

steady-state analysis. In all, the SB can be determined

by solving the three equations, i.e., Eq. (75) and the

two supplemental equations. The three unknowns to be

solved are b, DPext and minlet. A Hopf point can be

directly obtained when the solution for the three equa-

tions is found. All the Hopf points under a certain

studied case, such as the effect of the inlet pressure loss

coefficients, connected together constitute the SB for

the case.

In this paper the 49 partial derivatives in the Jacobian

under any steady state are obtained analytically using

the symbolic manipulation package ‘‘Mathematica’’,

and the three equations are also solved by the same

package. In addition, the Hopf points obtained are

checked using BIFPACK, which is a program package

specifically developed for continuation, bifurcation, and

stability analysis [10]. It can trace a series of stationary

solutions (such as decreasing DPext gradually), check

its stability automatically for each solution, and iden-

tify the type of bifurcation point when it is met. The

results shown are exactly the same for the two solving

methods, and the bifurcation points for the dynamic

system in this paper are indeed the Hopf points of

the supercritical nature, which are clearly indicated by

BIFPACK.
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3. Results and discussions

3.1. Input parameters and some preliminary parameter

sensitivity analyses

Table 1 presents the dimension of the annular

channel of secondary side and the two ducts of primary

side. Table 2 shows the steady-state operation inlet

parameters designed for the channel at the pressures of

2, 3, 4 MPa. The outlet parameters calculated from our

steady-state model can be referred to Ref. [8]. Some

input parameters required to do the SB analysis are

summarized in Table 3. It can be seen that the three

Npch’s under different working pressures vary little with

the inlet velocities. In fact, the relative little changes in

value for the Npch’s result from the operation require-
Table 1

Dimension of the annular channel and the primary ducts

Height of the channels L 1.3 m

Inner radius of the inner tube riwi 2.5· 10�3 m

Outer radius of the inner tube riwo 4.0· 10�3 m

Inner radius of the outer tube rowi 5.0· 10�3 m

Outer radius of the outer tube rowo 6.5· 10�3 m

Inner radius of the outer

insulated cylinder

re 8.1· 10�3 m

Table 2

Steady-state operation inlet parameters at all pressures

Primary sides S

mif ð¼ mofÞ � 102/(kg s�1) Tifi ð¼ TofiÞ/(�C) m

286.63

289.77 1

3.617 292.38 2

295.00 3

297.09 3

Table 3

Steady-state parameters for SB analyses

2 MPa 3 MPa

minlet Npch1 Npch2 Npch3 Npch1 N

1.0 8.742 468.201 223.255 5.141 2

0.85 7.694 466.821 225.654 4.473 2

0.6 6.206 464.832 229.815 3.276 2

0.5 5.632 464.229 231.566 2.713 2

0.35 5.035 463.407 234.243 1.847 2

Npch used 5 463.4 234 1.4 2

Nr 1.012

Nsub 21.603 (at Tbi ¼ 100 �C) 17.5

m0 (m/s) 0.129846

Fr 0.00132204 0
ment that the primary inlet temperatures are changed

linearly with the secondary inlet velocities (see Table 2).

The friction factors for the channel vary actually with

the flowing mass rate, but here for simplicity, they are

taken invariable as that in Karve’s analysis. Hence the

typical averaged values Nf 1 ¼ 12, Nf2 ¼ 22:4 and Nf 3 ¼
20:1 are used in the following analyses. It can be ex-

pected that this approximation method (i.e., taking three

invariable friction factors) combined with the parabolic

characteristic profile of the variation of external pressure

drop with the channel inlet velocity will result in some

inaccuracies at small inlet velocities, especially for small

inlet throttling coefficients. However, reasonable com-

putation results of the SB over the most range of the

inlet velocities or at relative large kinlet’s, which corre-

spondence to relative large DPext’s, can still be anti-

cipated.

It is well known that a narrow boiling channel is

more liable to experience instabilities when compared

with a boiling channel in conventional dimension. This

is identified from the large kinlet values (by the way, they

are readily achievable in practical applications) obtained

in this paper.

We also carried out some preliminary studies of

parameter sensitivity to the SB solved. The effect of the

little variation of the phase change numbers on SB is

examined by using the two different groups of phase

change numbers, i.e., Npch1, Npch2, Npch3, are respectively
econdary side

b � 104/(kg s�1) minlet

6.2406 0.2

5.601 0.5

3.402 0.75

1.203 1.0

7.443 1.2

4 MPa

pch2 Npch3 Npch1 Npch2 Npch3

26.866 130.02 3.314 118.833 83.549

23.905 130.9 2.909 117.664 84.584

23.932 134.215 2.33 115.811 86.398

21.559 134.695 2.114 115.142 87.171

21.017 136.411 1.888 114.153 88.357

21 137 2 114 88.4

1.0186 1.0258

99 (at 100 �C) 15.047 (at 100 �C)
0.134231 0.138174

.00141282 0.00149707



Fig. 2. The effects of kinlet and kexit on SB.

Fig. 3. The effects of Nsub on SB.
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1.4, 221, 137 and 5.141, 226.87, 130.02 at 3 MPa. The

comparison of the results shows that the differences

between two groups of results are very small and the

effect can be neglected. When taking Npch1, Npch2, Npch3

respectively as 1.4, 221, 137 and 5, 221, 137 at 3 MPa,

the results are totally the same for the two groups of

phase change numbers. It indicates that the effect of the

variation of Npch1 is the least among the three. Therefore

Npch1, Npch2, and Npch3 can be taken invariable respec-

tively as given in Table 3.

It is found that the most sensitive parameter to SB is

Nr, especially when kinlet is small. For example, for the

upper curve in Fig. 2 when kinlet is kept at 1200 and Nr

taken as 1.0186, the minlet, on the SB is 1.05539, but if Nr

is taken as 1.019 and 1.02 for the same situation, the

results of minlet are respectively changed to 0.784074 and

0.158424. However, when kinlet is kept at 1600 and Nr

taken respectively as 1.0186, 1.019 and 1.02, the results

obtained are 0.0246629, 0.023898 and 0.0224636. The

differences between the three minlet’s are narrowed. The

reason why the significant digits of Nr at a small kinlet
have so much influence on the results obtained is that

they affect the DPext profile much apparently for a small

kinlet while the approximation of invariable friction fac-

tors is less accurate. Therefore more significant digits

should be kept for Nr for a small kinlet in order to obtain

a more exact DPext and reduce the effect of approxima-

tion of invariable friction factors.

3.2. Effects of varying the inlet and outlet pressure loss

coefficients on the SB

The determination of the appropriate kinlet and the

effect of kexit on SB are very important to prevent the

density wave instability. It is shown in Fig. 2 that a

larger kinlet will ensure a more stable operation state, thus
increasing kinlet is stabilizing, while increasing kexit is de-
stabilizing since it reduces the stable region. The little

kexit in value can also achievable by reducing outlet

throttling as much as possible. Although the results

generally are in agreement with experimental and ana-

lytical findings of earlier investigators, there are still

some points needed to be stated. One is that the unstable

region still exists for a smaller inlet velocity however

large the kinlet is. This reveals that for the range of

parameters studied in this paper, the dynamic system

model developed at the present work manifests mathe-

matically well the characteristic of the unstable flow

boiling. Another point is the shapes of the two SB’s in

the figure are relatively flat, which means increasing kinlet
beyond a certain level (at what value of the level is the

most important concern for a practical application) will

ensure most of the working range in stable region. Be-

sides, the sensitivity of the SB to kexit is also strong

especially for a small kinlet, which can also be explained

from the relative large extent of the effect of kexit on DPext
when the kinlet is small.

3.3. Effects of varying the inlet subcooling number on the

SB

The variations of three stability boundaries, respec-

tively for three values of kinlet with inlet subcooling

number are shown in Fig. 3. It indicates that if the inlet

throttling coefficient is large enough, then the variation

of the inlet subcooling number does not have much

influence on the SB; but with the reduction of the inlet

throttling coefficient the SB will gradually change its

shape into a parabolic curve, which means for a certain

inlet velocity the flow will only be stable under a small

Nsub or over a large Nsub but between them the flow will

be unstable.



Fig. 4. The effects of system pressure on SB.
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The Nsub range studied in the figure is from 7.32 to

23.88, which correspondes to the range of inlet temper-

ature from 180 to 50 �C.

3.4. Effect of system pressure on the SB

As shown in Fig. 4, increasing the system pressure

will enlarge the stable region, thus is stabilizing. The

effect is similar to decreasing the outlet throttling coef-

ficient. Although the reference velocities for the three

system pressures are a little different (see Table 3) in Fig.

4, the comparison is still meaningful. The result of the

effect of system pressure is also in agreement with pre-

vious findings of other researchers.
4. Conclusions

The model developed in this paper describing the

forced-flow water boiling in a concentric circular-tube

narrow annulus heated by primary countercurrent water

from the inner surface and the outer surface simulta-

neously can manifest well the unstable flow boiling

characteristic of density wave type. For the cases studied

in present work the phase change numbers for the three

regions of the channel can be taken as piecewise con-

stants under different system pressures respectively.

Under the approximation of invariable friction coeffi-

cients, the more significant digits should be kept for

parameter Nr to do the SB analysis, especially when the

inlet throttling coefficient is small.

The large kinlet in value obtained in this paper indi-

cates the boiling flow instabilities in a narrow annular

channel are indeed more liable to occur compared with
a channel in conventional dimension. Increasing inlet

throttling coefficient or increasing system pressure is

stabilizing while increasing outlet throttling coefficient is

destabilizing. The sensitivity of the SB to outlet throt-

tling coefficient is also strong when inlet throttling

coefficient is relatively small. Changing inlet subcooling

temperature does not have much influence on the SB if

the density wave instability is depressed by a large inlet

throttling coefficient, yet for a small inlet throttling

coefficient the shape of the unstable region will become

parabolic.
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